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Chapter 1

Geometry, 7–8, High School

Overview

Geometry has two important streams that begin in elementary grades:
understanding properties of geometric figures and the logical con-
nections between them, and developing and using formulas to com-
pute lengths, areas and volumes. A third stream, coordinate ge-
ometry, surfaces in Grade 5, gains importance in Grades 6–8, and
mingles with algebra to become analytic geometry in high school.

Properties of geometric figures The first stream starts with learn-
ing in K–5 about geometric shapes, culminating in their classification
in Grade 5. In Grade 6, students develop an informal understand-
ing of congruence as they dissect figures in order to calculate their
areas. An important principle in this work is that if two figures
match exactly when they are put on top of each other (the infor-
mal notion of congruence) then they have the same area. In Grade
7, students gain an informal notion of similarity as they work with
scale drawings. They draw—or try to draw—geometric shapes that
obey given conditions, acquiring experience that they use in con-
sidering congruence in Grade 8 and congruence criteria in high
school. Grade 8 students work with transformations—mappings of
the plane to itself—understanding rigid motions and their properties
from hands-on experience, then understanding congruence in terms
of rigid motions. High school students analyze transformations that
include dilations, understanding similarity in terms of rigid motions
and dilations. Students prove theorems, using the properties of rigid
motions established in Grade 8 and the properties of dilations es-
tablished in high school. (Note the analogues between Grade 8 and
high school standards in the table below.) This approach allows K–5
work with shapes and later work with their motions be connected

*This document does not treat in detail all of the geometry studied in Grades
7–8 and high school. Rather it gives key connections among standards and notes
important pedagogical choices to be made.
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CHAPTER 1. G, 7–8, HS 3

to the to more abstract work of high school geometry and provides
a foundation for the theorems that students prove.

Grade 6 Grade 7 Grade 8 High School

Solve real-world and mathematical
problems involving area, surface
area, and volume.

Draw, construct, and describe ge-
ometrical figures and describe the
relationships between them.

Understand congruence and simi-
larity using physical models, trans-
parencies, or geometry software.

6.G.1. Find the area of right triangles,
other triangles, special quadrilaterals,
and polygons by composing into rect-
angles or decomposing into triangles
and other shapes. . . .

7.G.1. Solve problems involving scale
drawings of geometric figures. . . .

7.G.2. Draw . . . geometric shapes
with given conditions. . . .

8.G.2. Understand that a two-
dimensional figure is congruent to an-
other if the second can be obtained
from the first by a sequence of rota-
tions, reflections, and translations. . . .

Understand congruence in terms of
rigid motions

8.G.4. Understand that a two-
dimensional figure is similar to another
if the second can be obtained from the
first by a sequence of rotations, reflec-
tions, translations, and dilations. . . .

Understand similarity in terms of
similarity transformations

8.G.1. Verify experimentally the prop-
erties of rotations, reflections, and
translations. . . .

G-SRT.1. Verify experimentally the
properties of dilations given by a cen-
ter and a scale factor. . . .
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CHAPTER 1. G, 7–8, HS 4

Geometric measurement The second stream develops in conjunc-
tion with number and operations in Grades K–5. Students build on
their experience with length measurement to understand fractions
as subdivided length units on the number line. Starting in Grade 3
students work with the connection between multiplication and area,
expanding to volume in Grade 5. In Grades 6–8, students apply
geometric measurement to real-world and mathematical problems,
making use of properties of figures as they dissect and rearrange
them in order to calculate or estimate lengths, areas, and volumes.
Use of geometric measurement continues in high school. Students
examine it more closely, giving informal arguments to explain formu-
las used in earlier grades. These arguments draw on the abilities
they have developed in earlier grades: dissecting and rearranging
two- and three-dimensional figures; and visualizing cross-sections
of three-dimensional figures.

Grade 6 Grade 7 Grade 8 High School

Solve real-world and mathematical problems involving: Explain volume formulas and use
area, surface area, and volume. angle measure, area, surface area,

and volume.
volume of cylinders, cones, and
spheres.

them to solve problems.

6.G.1. Find the area of right triangles,
other triangles, special quadrilaterals,
and polygons by composing into rect-
angles or decomposing into triangles
and other shapes.

7.G.4. Know the formulas for the area
and circumference of a circle; give an
informal derivation of the relationship
between the circumference and area
of a circle.

8.G.9. Know the formulas for the vol-
umes of cones, cylinders, and spheres
and use them to solve real-world and
mathematical problems.

G-GMD.1 Give an informal argument
for the formulas for the circumference
of a circle, area of a circle, volume of a
cylinder, pyramid, and cone. Use dis-
section arguments, Cavalieri’s princi-
ple, and informal limit arguments.

6.G.2. Find the volume of a right
rectangular prism with fractional edge
lengths by packing it with unit cubes
of the appropriate unit fraction edge
lengths, and show that the volume
is the same as would be found by
multiplying the edge lengths of the
prism. . . .

7.G.6. Solve real-world and mathe-
matical problems involving area, vol-
ume and surface area of two- and
three-dimensional objects composed
of triangles, quadrilaterals, polygons,
cubes, and right prisms.

Understand and apply the
Pythagorean Theorem.

8.G.1. Explain a proof of the
Pythagorean Theorem and its con-
verse.

Draw, construct, and describe ge-
ometrical figures and describe the
relationships between them.

7.G.3. Describe the two-dimensional
figures that result from slicing three-
dimensional figures. . . .
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CHAPTER 1. G, 7–8, HS 5

Analytic geometry Grade 5 also sees the first trickle of a stream
that becomes important in high school, connecting geometry with
algebra, by plotting pairs of non-negative integers in the coordi-
nate plane. In Grade 6, the coordinate plane is extended to all four
quadrants, in Grades 6–8 it is used to graph relationships between
quantities, and in Grade 8 students use the Pythagorean Theorem to
compute distances between points. Students gain further experience
with the coordinate plane in high school, graphing and analyzing a
variety of relationships (see the Modeling, Statistics and Probabil-
ity, and Functions Progressions). They express geometric properties
with equations and use coordinates to prove geometric theorems al-
gebraically.

Standard or group heading Notable connections

Solve real-world and mathematical problems involving area, surface
area, and volume.

6 6.G.3. Draw polygons in the coordinate plane given coordinates for the
vertices; use coordinates to find the length of a side joining points with the
same first coordinate or the same second coordinate. Apply these. . . .

• Make tables of equivalent ratios relating quantities and plot the pairs
of values on the coordinate plane. (6.RP.3.a)

• Represent points on the line and in the plane with negative number
coordinates. (6.NS.6)

7
• Recognize and represent proportional relationships between quan-

tities. Decide whether two quantities are in a proportional relation-
ship, e.g., by graphing. Identify constant of proportionality from
graph. Explain what a point on the graph of a proportional rela-
tionship means in terms of the situation. (7.RP.2)

8
Understand and apply the Pythagorean Theorem.

8.G.8. Apply the Pythagorean Theorem to find the distance between two
points in a coordinate system.

• Graph proportional relationships. Use similar triangles to explain
uniqueness of slope. Solve pairs of simultaneous linear equations.
(8.EE)

• Determine rate of change and initial value from a graph. Interpret
the rate of change and initial value of a linear function in terms of its
graph. Analyze and sketch graphs. (8.F)

• Investigate patterns of association in bivariate data using scatter
plots and linear models. (8.SP)

HS

Expressing Geometric Properties with Equations (G-GPE)
Translate between the geometric description and the equation for a
conic section.

Use coordinates to prove simple geometric theorems algebraically.

• Functions

• Modeling

• Statistics and Probability
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CHAPTER 1. G, 7–8, HS 6

Grade 7

Draw, construct, and describe geometrical figures and describe
the relationships between them By sketching geometric shapes
that obey given conditions,7.G.2 students lay the foundation for the

7.G.2Draw (freehand, with ruler and protractor, and with technol-
ogy) geometric shapes with given conditions. Focus on construct-
ing triangles from three measures of angles or sides, noticing
when the conditions determine a unique triangle, more than one
triangle, or no triangle.

concepts of congruence and similarity in Grade 8, and for the practice
of geometric deduction that will grow in importance throughout the
rest of their school careers.

For example, given three side lengths, perhaps in the form of
physical or virtual rods, students try to construct a triangle. Two

Constructing a triangle with given side lengths

1.5
3

1
1.5

3

2

It is not possible to construct a triangle with side lengths 1, 1.5,
and 3. No matter how you move the smaller sides around at the
ends of the largest side they will never meet, because
1` 1.5 ă 3. If you increase the 1 to 2, you can create a triangle
by finding the intersection of circles as shown.

important possibilities arise: there is no triangle or there is exactly
one triangle. By examining many situations where there is no tri-
angle, students can identify the culprit: one side that is longer than
the other two put together. From this they can reason that in a
triangle the sum of any two sides must be greater than the third.

The second possibility is that there is exactly one triangle.• From

• What does “exactly one” mean? In Grade 7, two triangles with
the same side lengths are considered the same if one can be
moved on top of the other, so that they match exactly. In Grade
8, the movement will be described in terms of rigid motions.

this students gain an intuitive notion of rigidity: the same triangle is
forced on you no matter where you start to draw it. Students might
wonder whether two triangles that are reflections of each other are
considered the the same or different, noting that if a flip is allowed
as one of the motions in superposition then the two triangles are
considered the same.

Students should also work with figures with more than three
sides. For example, they can contrast the rigidity of triangles with
the floppiness of quadrilaterals, where it is possible to construct
many different quadrilaterals with the same side lengths.

Constructing a quadrilateral with given side lengths

1.5
3

1

The base is fixed and the two sides are of fixed length as they
move around circles centered at ends of the base. The top is a
rigid rod of fixed length that moves with its endpoints on the
circles, creating many quadrilaterals with the same side lengths.

Students examine situations where they are given two sides and
an angle of a triangle, or two angles and a side, preparing for the
congruence criteria for triangles in high school. Implicitly, the idea of

Constructing different triangles with the same angles

The red lines are parallel, constructing different triangles with the
black lines, all of which have the same angles.

being given a side depends on what it means for two line segments
to be the same. In Grade 7, it means having the same length. Using
a compass to show how a line segment can be translated from one
position to another can be a useful transition from the Grade 7 view
of “sameness” to the Grade 8 notion of congruence.

How many triangles have side lengths 2 and 12?

2
2

2
2

12

When students are given three angles of a triangle there are
also rich opportunities for discovery and reasoning. By setting lines
at specified angles, either physically or virtually, they can see that
the third angle is determined once two angles are given, paving
the way for an understanding of the geometric force of the angle-
sum theorem in Grade 8, as opposed to thinking of it as a merely
numerical fact about the sum of the angles. When a triangle with
given angles does exist, students can see that many such triangles
exist. For example, they can translate one of the lines back and
forth relative to the other two in such a way that the angles do not
change (see margin), obtaining triangles that will also be viewed in
high school as the results of dilations.

Students also work with scale drawings,7.G.1 drawings that repre-

7.G.1Solve problems involving scale drawings of geometric fig-
ures, including computing actual lengths and areas from a scale
drawing and reproducing a scale drawing at a different scale.

sent measurements of a real object in terms of a smaller unit of mea-
surement. Examples of scale drawings include architectural plans,
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CHAPTER 1. G, 7–8, HS 7

photocopies, and many maps. Some maps, e.g., the Mercator projec-
tion of the Earth, distort distances or land areas and are thus not
scale drawings. Likewise, technical drawings and photographs of
three-dimensional objects that require a distortion in scale and are
not scale drawings. Three-dimensional objects can be represented
without distortion by scale models such as doll houses, model trains,
architectural models, and souvenirs.

Students compute or estimate lengths in the real object by com-
puting or measuring lengths in the drawing and multiplying by the
scale factor. They investigate: What is the same and what is differ-
ent about the scale drawings and their original counterparts? Angles

7.G.3Describe the two-dimensional figures that result from slicing
three-dimensional figures, as in plane sections of right rectangu-
lar prisms and right rectangular pyramids.in a scale drawing are the same as the corresponding angles in the

real object. Lengths are not the same, but differ by a constant scale
factor.

Area in the scale drawing is also a constant multiple of area in
the original; however the constant is the square of the scale factor
(see margin).

How area changes under scaling

A B
CD

E F

G

|AE|
|AD| “ 4

|AG|
|AB| “ 4

|AF |
|AC | “ 4

The quotient of corresponding lengths is 4, while the quotient of
areas is 16 “ 42. See also the discussion of
http://www.illustrativemathematics.org/illustrations/107

Students study three-dimensional figures, in particular polyhe-
dral figures such as cubes or pyramids, and visualize them using
their knowledge of two-dimensional figures.7.G.3 A plane section of
a three-dimensional object is a two-dimensional slice formed by an
intersection of the object with a plane. Students investigate the

Cross-sections of a pyramid

Cross-section is another name for a plane section, but often
that name is reserved for a section of a three-dimensional object
that is parallel to one of its planes of symmetry or perpendicular
to one of its lines of symmetry. So, for example, for a cube, one
line of symmetry joins the centers of opposite faces. A
cross-section perpendicular to that line is a square, as is the
cross-section of the right rectangular pyramid shown above left.

two-dimensional figures that arise from plane sections of cubes and
pyramids. In addition to developing spatial sense and visualization
techniques, discussion of plane sections includes ways of gener-
ating three-dimensional objects from two-dimensional ones, paving
the way for calculating their volumes in Grade 8 and high school.

Solve real-life and mathematical problems involving angle mea-
sure, area, surface area, and volume In Grade 7, students extend
the use of geometric terms and definitions with which they have be-
come familiar: polygons, perimeter, area, volume and surface area of
two-dimensional and three-dimensional objects, etc. They continue
to apply their knowledge in order to solve problems.7.G.6 In Grade 6,

7.G.6Solve real-world and mathematical problems involving area,
volume and surface area of two- and three-dimensional objects
composed of triangles, quadrilaterals, polygons, cubes, and right
prisms.

students found the area of a polygon by decomposing it into trian-
gles and rectangles whose areas they could calculate, making use
of structure (MP.7) in order to reduce the original problem to collec-
tions of simpler problems (MP.1). Now they apply the same sort of
reasoning to three-dimensional figures, dissecting them in order to
calculate their volumes.

In order to reason about the volume of a prism it helps to know
what a prism is. Start with two planes in space that are parallel.
For any polygon in one plane move it in a direction perpendicu-
lar to that plane until it reaches the other plane. The resulting
three-dimensional figure is called a right rectangular prism, and the

Prisms with pentagonal basesoriginal polygon the base of the prism. (The margin also shows an
oblique prism, in which the base is moved in a direction that is not
perpendicular to the bottom plane.) Notice that any cross-section
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CHAPTER 1. G, 7–8, HS 8

of such a figure cut by a plane parallel to the original planes is a
copy of the base.

Students have long been familiar with circles and now they un-
dertake a calculation of their perimeters and areas.7.G.4 This is a step

7.G.4Know the formulas for the area and circumference of a circle
and use them to solve problems; give an informal derivation of
the relationship between the circumference and area of a circle.forward from their previous methods of calculating area by decom-

posing figures into rectangles and triangles. Students must now
grapple with the meaning of the area of a figure with curved bound-
ary. The area can be estimated by superimposing a square grid and
counting squares inside the figure, with the estimate becoming more
and more accurate as the grid is made finer and finer.

Using a grid to estimate area

There are pedagogical choices to be made about how to treat
the fundamental constant π . One option is to have students learn
about the relationship between the area and circumference of a circle
before introducing the name of the constant involved. Because a
diagram of a circle of radius r is a scale drawing of the circle of
radius 1 with scale factor r , students can deduce that the area of the
circle of radius r is proportional to the square of the radius. A scale
drawing argument can also be used to see that the circumference of
a circle is proportional to its radius. Finally, a dissection argument
suggests how the area and circumference of a circle are related.

Area and circumference of a circle of radius 1

Dissecting a circle of radius 1 into smaller and smaller sectors
gives an informal derivation of the relationship between its area
and circumference. As the sectors become smaller, their
rearrangement (on right) more closely approximates a rectangle
whose width is the area of the circle. The width is also half of the
circumference (shown in black).

Putting these together: If A is the area of a circle of radius r and C
is its circumference, then A “ kr2 and C “ 2kr where k is the area
of a circle of radius 1. Students can be told that k is known as π .

In Grade 7, students build on earlier experiences with angle mea-
surement (see the Grade 4 section of the Geometric Measurement
Progression) to solve problems that involve supplementary angles,
complementary angles, vertical angles, and adjacent angles. Verti-
cal angles have the same number of degrees because they are both
supplementary to the same angle. Keeping in mind that two geo-
metric figures are “the same” in Grade 7 if one can be superimposed
on the other, it follows that angles that are the same have the same
number of degrees. Conversely, if two angles have the same mea-
surement, then one can be superimposed on the other, so having
the same number of degrees is a criterion for two angles to be the
same. An angle is called a right angle if, after extending the rays
of the angle to lines, it is the case that all the angles at the vertex
are the same. In particular, the measurement of a right angle is
90˝. In this situation, the intersecting lines are said to be perpen-
dicular. Knowledge of angle measurements allows students to use
algebra to determine missing information about particular geometric
figures,7.G.5 using algebra in the service of geometry, rather than the

7.G.5Use facts about supplementary, complementary, vertical, and
adjacent angles in a multi-step problem to write and solve simple
equations for an unknown angle in a figure.other way around.
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CHAPTER 1. G, 7–8, HS 9

Grade 8

Rigid Motions and Congruence In Grade 7, two figures are con-
sidered the same if they “match up,” that is, one can be superim-
posed on the other. In Grade 8, students connect this idea with the
properties of translations, rotations and reflections.8.G.A They exper-

8.G.AUnderstand congruence and similarity using physical mod-
els, transparencies, or geometry software.imentally verify these properties8.G.1 and gain experience with them
8.G.1Verify experimentally the properties of rotations, reflections,
and translations:

a Lines are taken to lines, and line segments to line seg-
ments of the same length.

b Angles are taken to angles of the same measure.

c Parallel lines are taken to parallel lines.

by using transparencies. The paper below is fixed, and the trans-

Illustrating a reflection with a transparency

Trace the line of reflection (dotted) and the figure to be reflected
(two dots) from a piece of paper (in black) onto a transparency
(in red). Turn the transparency over and superimpose the red
and dotted black reflection lines.

parency above is moved, illustrating the motion. A translation slides
the transparency in a particular direction for a particular distance,
keeping horizontal lines horizontal; a rotation rotates the trans-
parency around a particular point, the center of the rotation, through
a particular angle; and a reflection flips the transparency over a
particular line, the line of the reflection. Reflections, rotations, and
translations, and compositions of these, are called rigid motions.•

• Students should get a sense that rigid motions are special
transformations. They should encounter and experience transfor-
mations which do not preserve lengths, do not preserve angles,
or do not preserve either.

Students manipulate these and observe they preserve the lengths
of line segments and the measurements of angles. Terminology for
transformations—for example image, pre-image, preserve—may be
introduced in response to the need to describe the effects of rigid
motions and other transformations.

Initially, students view rigid motions as operations on figures.
Later, students come to understand that it is not the figure that
is translated, rotated, or reflected, it is the plane that is moved,
carrying the figure along with it. Students start thinking, not of
moving one figure onto another, but of moving the plane so that the
first figure lands on the second. The point of this change is that it
becomes possible to describe the effect of these motions in terms of
coordinates. Special cases are investigated in Grade 8, and the idea
is fully developed in high school.

Two figures in the plane are said to be congruent if there is a
sequence of rigid motions that takes one figure onto the other.8.G.2 It 8.G.2Understand that a two-dimensional figure is congruent to an-

other if the second can be obtained from the first by a sequence
of rotations, reflections, and translations; given two congruent fig-
ures, describe a sequence that exhibits the congruence between
them.

should be noted that if we find a sequence of rigid motions taking
figure A to figure B, then we can also find a sequence taking figure B
to figure A. In high school mathematics the topic of congruence will
be developed in a coherent, logical way, giving students the tools
to investigate many geometric questions. In Grade 8, the treatment
is informal, and students discover what they can about congruence
through experimentation with actual motions.

As students perform transformations on the coordinate plane they
discover the relationship between the coordinates of the image and
the pre-image under rigid motions.8.G.3 In Grade 8, the list of trans-
formations for which this is feasible is quite short: translations, re-
flections in the axes, and rotations by 90˝ and 180˝.

Dilations and Similarity In Grade 7, students study scale drawings
to as a prelude to the transition from “same shape” to similarity in
Grade 8. In Grade 8, change in scale becomes understood in terms of
transformations that expand or contract the plane and the previous
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CHAPTER 1. G, 7–8, HS 10

work with scale drawings flows naturally into describing dilations
in terms of coordinates.8.G.3 8.G.3Describe the effect of dilations, translations, rotations, and

reflections on two-dimensional figures using coordinates.

8.G.4Understand that a two-dimensional figure is similar to another
if the second can be obtained from the first by a sequence of
rotations, reflections, translations, and dilations; given two similar
two-dimensional figures, describe a sequence that exhibits the
similarity between them.

Students observe the properties of dilations by experimenting
with them, just as they did with rigid motions. They notice that
shape is preserved under dilations, but that size is not preserved
unless r “ 1. This observation suggests that we make the idea of
“same shape” can be made precise as similarity: Two figures are
similar if there is a sequence of rigid motions and dilations that
places one figure directly on top of the other.8.G.4

8.EE.6Use similar triangles to explain why the slopem is the same
between any two distinct points on a non-vertical line in the coor-
dinate plane; derive the equation y “ mx for a line through the
origin and the equation y “ mx ` b for a line intercepting the
vertical axis at b.

Similar triangles and slope

L

L1

C

The line L1 goes through the vertices of the right angles of the
slope triangles for line L. If L and L1 are parallel, there is a
translation that maps one slope triangle to another. If L and L1
are not parallel, they intersect in a point C (as shown above) and
there is a dilation with center C that takes one triangle onto the
other. In either case, the quotients of vertical and horizontal leg
lengths for the two triangles are the same.

An important use of these properties is that of verifying that the
slope of a (non-vertical) line can be determined by any two points
on the line.8.EE.6 See the Expressions and Equations Progression.

Parallel Lines, Transversals, and Triangles In Grade 8, students
build on their experimentation with triangles in Grade 7 and start
to make informal arguments about their properties.8.G.5 They begin

8.G.5Use informal arguments to establish facts about the angle
sum and exterior angle of triangles, about the angles created
when parallel lines are cut by a transversal, and the angle-angle
criterion for similarity of triangles.

to see how rigid motions can play a role in such arguments.
For example, in Euclid’s Elements two lines are defined to be

parallel if they have no point of intersection. This definition requires
imagining the two lines on the plane, which extend in two opposite
directions, and checking to see that the two lines do not intersect
anywhere along their infinite lengths. The Elements gives another
way of thinking about what it means for two lines to be parallel:
Given two lines L and L1, draw a third line L2 (called a transversal)
that intersects both. The lines L and L1 are parallel if corresponding
angles at their points of intersection with L2 are the same. This
requires imagining only a finite section of the plane large enough
to include segments from corresponding angles (as in the margin).

Students can use the properties of rotations and the figure in the
margin to understand why Euclid’s definition of parallel lines might
be equivalent to the less intuitive characterization given in terms of
corresponding angles.

Using a rotation to make parallel lines

P

A 1800 rotation about point P maps the line through P to itself.
The image of the black line is the red line. Because a rigid
motion takes an angle to an angle of the same measure,
corresponding angles in this figure must be equal. The two
horizontal lines cannot intersect; if they did, their images under
the rotation would also intersect. (For example, if the lines
intersected to the left of P in the pre-image, the image of their
intersection would appear to the right of P.) If the two lines
intersect in two distinct points, they must be the same line. Thus,
the red and black lines are parallel according to Euclid’s
definition.

This discussion of lines and angles can continue to consider con-
straints on angles in triangles. First, given two (interior) angles in
a triangle, their sum must be less than 180˝. If the sum were equal
to 180˝, then the triangle would have two parallel sides, and thus
no third vertex. From here students might get evidence about the
sum of the three angles of a triangle by drawing their their favorite
triangles, cutting out the angles, and putting their vertices together.
This is an opportunity to distinguish between corrected and flawed
reasoning (MP.3). If all 30 students in the class cut out the angles
of their 30 triangles, and upon placing the vertices together get an
almost straight angle, is this proof of the assertion that the sum of
the angles of a triangle is a straight angle? Should they conclude
instead that the sum is almost always a straight angle, but there
may be exceptions? Most importantly, why is it true that the sum of
the angle is 180˝?8.G.5

8.G.5Use informal arguments to establish facts about the angle
sum and exterior angle of triangles, about the angles created
when parallel lines are cut by a transversal, and the angle-angle
criterion for similarity of triangles.
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CHAPTER 1. G, 7–8, HS 11

Understand and apply the Pythagorean Theorem. In Grade 7,
while exploring the question, “What determines a unique triangle?,”
students might find that a right triangle is determined by the lengths
of any two of its sides. In Grade 8, students might ask: “How do
we find the length of the third side, knowing the lengths of two
sides?”—beginning a series of investigations that leads naturally to
the Pythagorean Theorem and its converse.

Students learn that there are lengths that cannot be represented
by a rational number. For example, by looking at areas of figures
in the coordinate plane, students discover that the hypotenuse of a
triangle with legs of length 1 is an irrational number (see margin).

Squares in the coordinate plane

The square on the right has area 4. The square inside it (which
is also the square on the left) must have area 2, because it is
obtained by subtracting from the large square four triangles of
area 1

2 . Because its area is 2, the side length of this square
must be

?
2.

Students can continue this line of reasoning to explain a dissection
proof of the Pythagorean Theorem.8.G.6 And here, it is essential to

8.G.6Explain a proof of the Pythagorean Theorem and its con-
verse.

Dissection that explains the Pythagorean Theorem

avoid the algebra involving the expansion of pa ` bq2, since that
is not Grade 8 algebra. There are many proofs without words or
symbols on the Internet. Not only is this visually more convincing,
but it provides a purely geometric proof, consistent with the theme
of Euclid’s Elements.

This is an opportunity to discuss the meaning of converse, and the
converse of the Pythagorean Theorem: a triangle with side lengths
satisfying c2 “ a2`b2 must be a right triangle with the right angle
opposite the side of length c. Tradition has it that ancient Egyp-
tian surveyors used the converse to construct right angles. They
carried a loop of rope with 12 equally spaced knots. By pulling
the rope taught, insisting that there be an angle at the fourth knot,
and another at the seventh knot, they guaranteed that the angle at
the fourth knot is a right angle: the triangle with side lengths 3,4,5
is a right triangle. This (with knots replaced by markings) is the
method recommended by the United Nations Food and Agriculture
Organization.1

An argument for the converse of the Pythagorean Theorem can
be given. Recall the discussion of uniqueness in Grade 7: a triangle
with given side lengths is unique. Suppose there is some triangle
T with side lengths a, b, and c such that c2 “ a2 ` b2. Must T
be a right triangle? By the Pythagorean Theorem, there is a right
triangle with the same side lengths that T has, namely the right
triangle with legs a and b and hypotenuse c. Because a triangle
with given side lengths is unique, T must be that right triangle. Note
that this argument implicitly uses the SSS criterion for congruence.

In Grade 6, students calculate distances in the coordinate plane
between points lying on the same horizontal or vertical line. In par-
ticular, they calculate the lengths of the vertical and horizontal legs
of a slope triangle corresponding to two points in the coordinate
plane. In Grade 7, they can use the Pythagorean Theorem to cal-
culate the length of its hypotenuse, which is the distance between
the two points.8.G.8 Calculating this distance as an application of the

8.G.8Apply the Pythagorean Theorem to find the distance between
two points in a coordinate system.Pythagorean Theorem before doing so in high school as an applica-

1See http://www.fao.org/docrep/R7021E/r7021e05.htm.
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tion of the distance formula provides students an opportunity to look
for and make use of structure in the coordinate plane (MP.7), and
provides an opportunity for students to connect the distance formula
to previous learning.

Solve real-world and mathematical problems involving volume of
cylinders, cones, and spheres. In elementary grades, students be-
came familiar with cubes, prisms, cones, and cylinders.1.G.2 They cal-

1.G.2Compose two-dimensional shapes (rectangles, squares,
trapezoids, triangles, half-circles, and quarter-circles) or three-
dimensional shapes (cubes, right rectangular prisms, right cir-
cular cones, and right circular cylinders) to create a composite
shape, and compose new shapes from the composite shape.2

culated the volumes of right rectangular prisms—with whole-number
edge lengths in Grade 5, and with fractional edge lengths in Grade
6. In Grade 7, they examined cross-sections of right rectangular
prisms and pyramids, and calculated volumes of right prisms.7.G.6 In

7.G.6Solve real-world and mathematical problems involving area,
volume and surface area of two- and three-dimensional objects
composed of triangles, quadrilaterals, polygons, cubes, and right
prisms.

Grade 8, students work with a wider variety of three-dimensional
figures, including non-right figures.

Different cones with the same base

A cone is formed by drawing segments from a two-dimensional
figure to a point that lies outside the plane of the figure; to be
precise, it is the set of all line segments from the point to the
figure. The two-dimensional figure is called the base of the
cone, and the point, its apex. The two cones shown above have
the same base (a circle) but different heights. The height of the
cone on the left intersects the center of the base (thus, the cone
is a right cone), the other height does not.

Students learn and use formulas for the volumes of cylinders,
cones, and spheres.8.G.9 Explanations for these formulas do not oc-

8.G.9Know the formulas for the volumes of cones, cylinders, and
spheres and use them to solve real-world and mathematical prob-
lems.

cur until high school.G-GMD.1 However, Grade 8 students can look for

G-GMD.1 Give an informal argument for the formulas for the cir-
cumference of a circle, area of a circle, volume of a cylinder,
pyramid, and cone.

structure in these formulas (MP.7). They know that the volume of
a cube with sides of length s is s3. A cube can be decomposed
into three congruent pyramids, each of which has a square base,
where the height is equal to the side length of the square. Each

Dissecting a cube into congruent pyramids

of these pyramids must have the volume 1
3s

3, suggesting that the
volume of a pyramid whose base has area b and whose height is h
might be 1

3bh. The volume formulas for cylinders and cones have an
analogous relationship.

cylinder bh “ πr2h

cone 1
3bh “

1
3πr

2h

Draft, 24 March 2016, comment at commoncoretools.wordpress.com.

commoncoretools.wordpress.com


CHAPTER 1. G, 7–8, HS 13

High School

One of the problems encountered by learners in geometry is the
formalism of prevailing presentations of the subject. The two basic
concepts of congruence and similarity come across as either formal
and abstract, or pleasant but irrelevant. In the axiomatic presenta-
tions, congruence and similarity are defined only for polygons, and
as such they are divorced from the way these terms are used in
the intuitive context. In the other extreme, congruence is “same size
and same shape," and similarity is “same shape but not necessarily
the same size," vague expressions that are often not connected with
techniques for proving theorems such as the triangle congruence
and similarity criteria (SAS, ASA, SSS, and AA).

The approach taken in the Standards is intended to avoid the
pitfalls associated with both of these extremes. Instead of being
vaguely defined or defined only for polygons, congruence and sim-
ilarity are defined in terms of transformations. In particular, con-
gruence is defined in terms of rigid motions—reflections, rotations,
and translations. The potential benefit of this definition is that the
abstract concept of congruence can then be grounded in kinetic and
tactile experiences. This is why the Grade 8 geometry standards
ask for the use of manipulatives, especially transparencies, to illus-
trate reflections, rotations, and translations, i.e., to illustrate con-
gruence. In high school, students use the properties of reflections,
rotations, and translations to prove the three congruence criteria. In
this approach, proving theorems in geometry does not have to be
an exercise in formalism and abstraction. Congruence is something
students can relate to in a tactile manner just by moving a trans-
parency over a piece of paper. Likewise, the learning of similarity
can be grounded in tactile experiences.

There is also another advantage of this approach to congruence
and similarity. Because most of the theorems in plane geometry
before the introduction of similarity depend only on the three tri-
angle congruence criteria, once these have been established, it is
possible to transition into the traditional way of proving theorems
at this point, without further use of basic rigid motions, if so desired.
The use of dilations to treat similarity can likewise be limited to the
initial stage if so desired.3

Congruence
The different tools available to students for studying geometry in

G-CO.12 Make formal geometric constructions with a variety of
tools and methods (compass and straightedge, string, reflective
devices, paper folding, dynamic geometric software, etc.).high school—straightedge and compass, transparencies or translu-

cent paper, dynamic geometry software—lead to different insights
and understandings, and can be used throughout for different pur-
poses (MP5). Early experience with simple constructions, such as
construction of a perpendicular to a line or of a line through a given

3See http://math.berkeley.edu/~wu/CCSS-Geometry.pdf
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point parallel to a given line,G-CO.12 can give a specificity to geometric
concepts that can serve as a good basis for developing precise defi-
nitions and arguments.G-CO.1 For example, the act of setting compass

G-CO.1 Know precise definitions of angle, circle, perpendicular
line, parallel line, and line segment, based on the undefined no-
tions of point, line, distance along a line, and distance around a
circular arc.points to a given length and then drawing a circle with a given cen-

ter makes concrete the formal definition of a circle. Two distinct lines
are defined to be parallel if they do not intersect. In high school,
students formalize an important understanding about parallel lines
as the Parallel Postulate.•

• The Parallel Postulate

Given a line ` and a point P not on the line, there is exactly one
line through P parallel to ` .
Students are not required to explain why this formulation of the
Parallel Postulate (known as Playfair’s Axiom) is equivalent to
Euclid’s Fifth Postulate, however, see the Grade 8 discussion of
parallel lines for an illustration of this equivalence.

Definition of rotation

t
O

P

Q “ RpPq

|t|O
P

Q “ RpPq
The rotation R around the point O through the angle t takes a
point P to the point Q “ RpPq as follows. If P “ O, then
RpOq “ O. If P ‰ O and t ě 0, then Q is on the circle with
center O and radius |OP| so that =POQ “ t˝ and Q is
counterclockwise from P. If t ă 0, we rotate clockwise by |t|˝.

Definition of translation

A
B

P
Q “ T pPq

`

The translation T along the directed line segment ~AB takes the
point P to the point Q “ T pPq as follows. Draw the line `
passing through P and parallel to line through A and B. Then Q
is the point on ` so that the direction from P to Q is the same as
the direction from A to B and so that |PQ| “ |AB|.

Definition of reflection

`

P

Q “ SpPq

The reflection S across the line ` take each point on ` to itself,
and takes any other point P to the point Q “ SpPq which is such
that ` is the perpendicular bisector of the segment PQ.

Later in their studies, students can use dynamic geometry soft-
ware to visualize theorems. The fact that the medians of a triangle
always intersect in a point is more remarkable when the triangle is
moving and changing shape. Geometric constructions and the tools
for making them can be woven through a geometry course.

Experiment with transformations in the plane Students in high
school start to formalize the intuitive geometric notions they devel-
oped in Grades 6–8.G-CO.1 For example, in Grades 6–8 they worked
with circles and became familiar with the idea that all the points on
a circle are the same distance from the center. In high school, this
idea underlies the formal definition of a circle: given a point O and
a positive number r , a circle is the set of all points P in the plane
such that |OP| “ r . This definition will be important in proving
theorems about circles, for example the theorem that all circles are
similar.

Students also formalize the notion of a transformation as a func-
tion from the plane to itself.G-CO.2 When the transformation is a rigid

G-CO.2 Represent transformations in the plane using, e.g., trans-
parencies and geometry software; describe transformations as
functions that take points in the plane as inputs and give other
points as outputs. Compare transformations that preserve dis-
tance and angle to those that do not (e.g., translation versus hor-
izontal stretch).

motion (a translation, rotation, or reflection) it is useful to represent
it using transparencies because two copies of the plane are rep-
resented, one by the piece of paper and one by the transparency.
These correspond to the domain and range of the transformation,
and emphasize that the transformation acts on the entire plane, tak-
ing each point to another point. The fact that rigid motions preserve
distance and angle is clearly represented because the transparency
is not torn or distorted.

Constructing the results of transformations using a straightedge
and compass can also bring out their functional aspect. For exam-
ple, given a directed line segment AB and a point P , students can
construct a line through P parallel to AB, then mark off the distance
|AB| along that line to construct the image of P under translation.

Transparencies are particularly useful for representing the sym-
metries of a geometric figure,G-CO.3 because they keep the original

G-CO.3 Given a rectangle, parallelogram, trapezoid, or regular
polygon, describe the rotations and reflections that carry it onto
itself.

and transposed figure on separate planes, something that can only
be imagined when you are using geometry software.

G-CO.4 Develop definitions of rotations, reflections, and transla-
tions in terms of angles, circles, perpendicular lines, parallel lines,
and line segments.

Building on their hands-on work with rigid motions, students
learn mathematical definitions of them (see margin).G-CO.4 These def-
initions serve as the logical basis for all the theorems that students
prove in geometry. Three basic properties of rigid motions are taken
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as axiomatic, that is, as not needing proof. All rigid motions are as-
sumed to

G-CO.5 Given a geometric figure and a rotation, reflection, or trans-
lation, draw the transformed figure using, e.g., graph paper, trac-
ing paper, or geometry software. Specify a sequence of transfor-
mations that will carry a given figure onto another.

G-CO.6 Use geometric descriptions of rigid motions to transform
figures and to predict the effect of a given rigid motion on a given
figure; given two figures, use the definition of congruence in terms
of rigid motions to decide if they are congruent.

• map lines to lines, rays to rays, and segments to segments.

• preserve distance.

• preserve angle measure.

In Grade 8, students described sequences of rigid motions in-
formally and in terms of coordinates. An important step forward in
high school is to give precise descriptions of sequences of rigid mo-
tions that carry one figure onto another.G-CO.5 Each rigid motion must

G-CO.5 Given a geometric figure and a rotation, reflection, or trans-
lation, draw the transformed figure using, e.g., graph paper, trac-
ing paper, or geometry software. Specify a sequence of transfor-
mations that will carry a given figure onto another.be specified: For each rotation, a specific point and angle must be

given; each translation is determined by a pair of points; and each
reflection by a specific line, known as the line of reflection. These
points, lines and angles must be described in terms of the two figures
(see margin).

Understand congruence in terms of rigid motions Two figures are
defined to be congruent if there is a sequence of rigid motions carry-
ing one onto the other.G-CO.6 It is important to be wary of circularity

Proving congruence

A

B

C

P

Q

R

T

T pAq

T pCq

R

P

Q “ T pBq

R

RpT pAqq

P

Q

R “ RpT pCqq

Suppose that the corresponding sides and corresponding angles
of4ABC and4PQR are equal. First translate4ABC along the
line segment BQ, so that T pBq “ Q. Then rotate clockwise
about Q through the angle =T pCqQR . Because translation and
rotation preserve distance, we have R “ RpT pCqq. Now reflect
across the line through R and Q. Because the rigid motions
preserve angles, the line through R and P coincides with the
reflection of the line through R and RpT pAqq, and because they
preserve distance the point P coincides with the reflection of
RpT pAqq. Now all three points of the triangle coincide, so we
have produced a sequence of rigid motions that maps4ABC
onto4PQR , and they are therefore congruent.

when using this definition to establish congruence. For example,
you cannot assume that if two triangles have corresponding sides
of equal length and corresponding angles of equal measure then
they are congruent; this is something that must be proved using the
definition of congruent, as shown in the margin.G-CO.7

Notice that the argument in the margin does not in fact use
every equality of corresponding sides and angles. It only uses
|BC | “ |QR |, m=ACB “ m=PRQ, and |CA| “ |RP| (along with
the fact that rigid motions preserve all of these equalities). These
equalities are indicated with matching hash marks in the figures.
Thus, this argument it amounts to a proof of the SAS criterion for
congruence. A variation of this argument can also be used to prove
the ASA criterion. In that case one would drop the assumption that
|AC | “ |PR | (the double hash marks) and add the assumption that
m=ABC “ m=PQR . Then one would argue at the conclusion that
P coincides with the reflection RpT pAqq because line QP coincides
with the reflection of line QRpT pAqq, and therefore its intersection
with line RP must coincide with the reflection of RpT pAqq. The
proof of the SSS congruence criterionG-CO.8 is a little more involved.4

G-CO.8 Explain how the criteria for triangle congruence (ASA,
SAS, and SSS) follow from the definition of congruence in terms
of rigid motions.

Prove geometric theorems Once the triangle congruence criteria
are established using the transformation definition of congruence
in terms of rigid motions, a geometry course can proceed to prove
other theorems in the traditional way. Alternatively, a course could
take advantage of the transformation definition of congruence to

4See, for example, page 148 of Wu, https://math.berkeley.edu/~wu/
Progressions_Geometry.pdf.
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give particularly simple proofs of some theorems. For example, the
theorem that the base angles of an isosceles triangle are congruent
can be proved by reflecting the triangle about the bisector of the
angle between the two congruent sides.

The base angles of an isosceles triangle are congruent

Because reflections preserve angle and length, the two
congruent sides are taken to each other, and therefore the
reflection takes the triangle to itself. This means it maps the
base angles onto each other, and so they must be congruent.

Fertile territory for exercising students’ reasoning abilities is the
proof that various geometric constructions are valid, that is, they
construct the figures that they are intended to construct.G-CO.13

G-CO.13 Construct an equilateral triangle, a square, and a regular
hexagon inscribed in a circle.

Similarity
Understand similarity in terms of similarity transformations The
concept of similarity builds on the concept of congruence, and so is
introduced after it, following a progression like that for congruence.

Definition of dilation

O
P

Q “ D pPq

The dilation D with center O and positive scale factor r leaves O
unchanged and takes every point P to the point Q “ D pPq on
the ray OP whose distance from O is r|OP|.

As with rigid motions, student develop the notion of dilation they
developed in Grade 8 into a formal definition of a dilation as a
function on the plane. Two figures are defined to be similar if there
is a sequence of rigid motions and dilations which takes one to the
other. Equivalently, and more conveniently in many arguments, we
can say that two figures are similar if one is congruent to a dilation
of the other.

G-SRT.1 Verify experimentally the properties of dilations given by
a center and a scale factor:

a A dilation takes a line not passing through the center of
the dilation to a parallel line, and leaves a line passing
through the center unchanged.

b The dilation of a line segment is longer or shorter in the
ratio given by the scale factor.

As with rigid motions, students get hands-on experience with
dilations in Grade 8, using graph paper or dynamic geometry soft-
ware. In high school, they observe basic properties of dilations. For
example, they observe experimentally that a dilation takes a line
to to another line which is parallel to the first, or identical to it if
the line is through the center of dilation.G-SRT.1a This important fact
is used repeatedly in later work.

The traditional notion of similarity applies only to polygons. Two
G-SRT.2 Given two figures, use the definition of similarity in terms
of similarity transformations to decide if they are similar; explain
using similarity transformations the meaning of similarity for trian-
gles as the equality of all corresponding pairs of angles and the
proportionality of all corresponding pairs of sides.

such figures are said to be similar if corresponding angles are con-
gruent and corresponding lengths are related by a constant scale
factor. If similarity is defined in terms of transformations, then this
understanding is a consequence of the definition rather than being
a definition itself.G-SRT.2

For example, using the fact that a dilation takes a line to a
parallel line, and facts about transversals of pairs of parallel lines,
students can show that a dilation preserves angles, that is, the image
of an angle is congruent to the angle itself (see margin).

Showing that dilations preserve angles

A
B C

D

E F

O

The dilation with center O takes =ABC to =DEF . The line EF
is parallel to the line BC . Extending segment ED to a
transversal of these two parallel lines and using the fact that
alternate interior angles are congruent, we see that =ABC is
congruent to =DEF .

They also observe that under dilation the length of any line
segment—not only segments with an endpoint at the center—is
scaled by the scale factor of the dilation.G-SRT.1b A complete proof of
this fact is beyond the scope of a high school geometry course, but
a proof in specific cases is suitable for an investigation by STEM-
intending students. The simplest case is where the scale factor is 2,
which can be proven by a congruence argument.

Conversely, students can see that two figures which are similar
according to the traditional notion are also similar according to the
transformation definition by deriving the AA criterion for similarity
of triangles (see margin on next page).G-SRT.3 G-SRT.3 Use the properties of similarity transformations to estab-

lish the AA criterion for two triangles to be similar.
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An advantage of the transformational approach to similarity is
that it allows for a notion of similarity that extends to all figures
rather than being restricted to figures composed of line segments.

Proof of the AA criterion using similarity

A

B

C

B1

C 1

D E

F
Given4ABC and4DEF with m=A “ m=D and
m=B “ m=E , perform a dilation on4ABC with center at A so
that |AB1| “ |DF |. Because dilations preserve angles,
m=B1 “ m=E , and so4AB1C 1 is congruent to4DEF by the
ASA criterion. Since4AB1C 1 is a dilation of4ABC , this means
that4ABC is similar to4DEF .

For example, consider a dilation of a circle whose center is the center
of the dilation. Every point on the circle moves the same distance
away, because they were originally all at the same distance from
the center. Thus the new figure is also a circle. This reasoning can
also be reversed to show that any two circles with the same center
are similar. Furthermore, because any circle can be translated so
that its center coincides with the center of any other circle, we can
see that all circles are similar.G-C.1

G-C.1 Prove that all circles are similar.

Prove theorems involving similarity Students may have already
seen a dissection proof of the Pythagorean Theorem which depends
on congruence criteria for triangles. Now they can see a proof that
uses the concept of similarity. This proof is an example of seeing
structure (MP.7), because it requires constructing an auxiliary line,
the altitude from the right angle to the hypotenuse, which reveals a
decomposition of the triangle into two smaller similar triangles. The
proof combines geometric insight and algebraic manipulation. G-SRT.4

The Pythagorean Theorem using similarity

A

C

BD c

b a

x y

h

Given a right triangle ABC with right angle at C , drop an altitude
from C to AB to decompose the triangle into two smaller
triangles. Using the facts that the sum of the angles at C is 900
and the sum of the angles in each triangle is 1800, we see that
=DAC is congruent to =DBC . Also, all three triangles have a
right angle. So, by the AA criterion for similarity,4ACD and
4CBD are similar to4ABC , so

a
c “

y
a and

b
c “

x
b

and therefore
a2 ` b2 “ cpx ` yq “ c2.

G-SRT.4 Prove theorems about triangles. Theorems include: a
line parallel to one side of a triangle divides the other two propor-
tionally, and conversely; the Pythagorean Theorem proved using
triangle similarity.

Define trigonometric ratios and solve problems involving right tri-
angles Because all right triangles have a common angle, the right
angle, the AA criterion becomes, in the case of right triangles, an
“A criterion”; that is, two right triangles are similar if they have an
acute angle in common. This observation is the key to defining a
trigonometric ratio• for a single acute angle.G-SRT.6

• Traditionally, trigonometry concerns “ratios.” Note, however,
that according to the usage of the Ratio and Proportional Rea-
soning Progression, that these would be called the “value of the
ratio.” In high school, students’ understanding of ratio may now
be sophisticated enough to allow “ratio” to be used for “value of
the ratio” in the traditional manner. Likewise, angles are carefully
distinguished from their measurements in Grades 4 and 5. In
high school, students’ understanding of angle measure may now
allow angles to be referred to by their measurements.

G-SRT.6 Understand that by similarity, side ratios in right triangles
are properties of the angles in the triangle, leading to definitions
of trigonometric ratios for acute angles.

Analytic Geometry
The introduction of coordinates into geometry connects geometry
and algebra, allowing algebraic proofs of geometric theorems. This
area of geometry is called analytic geometry.

The coordinate plane consists of a grid of horizontal and vertical
lines; each point in the plane is labeled by its displacement (positive
or negative) from two reference lines, one horizontal and one vertical,
called coordinate axes. Note that it is the displacement from the
axes, rather than the displacement along these axes, that is usually
the most useful concept in proving theorems. This point is sometimes
obscured for students by the mathematical convention of putting a
scale on the axes themselves and labeling them x-axis and y-axis.
A different convention, of putting the scale within a quadrant (e.g., as
can be done with dynamic geometry software), is sometimes used,
and might be more useful pedagogically (see margin on next page).

From their work in Grade 8, students are familiar with the idea
that two points px1, y1q and px2, y2q in the coordinate plane deter-
mine a right triangle whose hypotenuse is the line segment between
the two points and whose legs are parallel to the axes.• Two im- • The triangle is degenerate, collapsing to a line, if the line is

horizontal or vertical.
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portant geometric facts about these triangles lead to foundational
formulas in analytic geometry.

Displaying the coordinates of a point

x

y

px, yq

A standard convention is the use of x to represent the horizontal
displacement of a point from the vertical axis and y to represent
its vertical displacement from the horizontal axis. Showing these
displacements within a quadrant rather than on the x- and
y-axes emphasizes the fact that they can be viewed as
distances from the axes as well as distances along the axes.

First, for all the pairs of distinct points on a given line, the cor-
responding triangles are similar. This can be shown using the AA
criterion for similarity. Because the horizontal (or vertical) grid lines
are all parallel to each other, and the line is transversal to those
parallel lines, the ratio of the vertical side to the horizontal side does
not depend on which two points are chosen, and so is a characteris-
tic of the line itself, called its slope, m. The algebraic manifestation
of this is the slope formula:

m “ y2 ´ y1
x2 ´ x1

,

The relationship between the slopes of parallel and perpendicu-
lar lines is a nice example of the interplay between geometry and
algebra.G-GPE.5

G-GPE.5 Prove the slope criteria for parallel and perpendicular
lines and use them to solve geometric problems (e.g., find the
equation of a line parallel or perpendicular to a given line that
passes through a given point).Second, the Pythagorean Theorem applies: the length of the hy-

potenuse is the distance between the two points, and the lengths
of the legs can be calculated as differences between the coordi-
nates. The algebraic manifestation of the Pythagorean Theorem is
the formula for the distance, d, between the two points:

d “
b

px2 ´ x1q2 ` py2 ´ y1q2.

Students can use the distance formula to prove simple facts about
configurations of points in the plane.G-GPE.4

G-GPE.4 Use coordinates to prove simple geometric theorems al-
gebraically. For example, prove or disprove that a figure defined
by four given points in the coordinate plane is a rectangle; prove
or disprove that the point p1,

?
3q lies on the circle centered at

the origin and containing the point p0, 2q.
However, the power of analytic geometry to reduce geometric

relationships to algebraic ones is a danger in teaching it because
students can lose sight of the geometric meaning of the formulas.
Thus the equation for a circle with center pa, bq and radius r ,

G-GPE.1 Derive the equation of a circle of given center and radius
using the Pythagorean Theorem; complete the square to find the
center and radius of a circle given by an equation.

Equations for circles and parabolas

px, yq

pa, bq

r y´ b

x ´ a

p0, aq

y “ ´a

px, yq

y` a

length is
a

x2 ` py´ aq2

Applying the Pythagorean Theorem to the triangle on the left
yields the equation for a circle, px ´ aq2 ` py´ bq2 “ r2.

On the right is parabola, defined geometrically by the condition
that a point on the parabola is equidistant from the focus (at
p0, aq and the directrix (the line y “ ´a). Setting these two
distances equal and squaring both sides yields
x2 ` py´ aq2 “ py` aq2, which reduces to the familiar
equation y “ p1{4aqx2.

px ´ aq2 ` py´ bq2 “ r2

can become disconnected from the Pythagorean theorem, even though
it is nothing more than a direct statement of that theorem for any
right triangle with radius of the circle as its hypotenuse.G-GPE.1

As another example, students sometimes get the the impression
that the word “parabola” is the name for the graph of a quadratic
function, whereas a parabola is a geometric object with a geomet-
ric definition. It is a beautiful and simple exercise in the inter-
play between geometry and algebra to derive the equation from
this definition.G-GPE.2

G-GPE.2 Derive the equation of a parabola given a focus and di-
rectrix.
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Geometric Measurement
In Grade 8, students learned the formulas for the volumes of cones,
cylinders, and spheres. In high school, they give informal justifi-
cations of these formulas.G-GMD.1 The cube dissection argument on

G-GMD.1 Give an informal argument for the formulas for the cir-
cumference of a circle, area of a circle, volume of a cylinder, pyra-
mid, and cone. Use dissection arguments, Cavalieri’s principle,
and informal limit arguments.page 12 verifies the formula for the volume of a specific pyramid

with a square base. In high school, students view the pyramid as a
stack of layers, and, using CavalieriâĂŹs Principle, see that shifting
its layers does not change its volume. Furthermore, stretching the

Shifted layers of a pyramid

height of the pyramid by a given scale factor thickens each layer
by the scale factor, and so multiplies its volume by that factor. Us-
ing such arguments, students can derive the formula for the volume
of any pyramid with a square base. A further exploration using
dissection arguments, transformations of layers, and informal limit
arguments, can lead to the general formula for the volume of a cone.

A more complex argument in terms of layers derives the formula
for the volume of a sphere from the formula for the volume of a cone.5

Geometry and Modeling
Any mathematical object that represents a situation from outside
mathematics and can be used to solve a problem about that sit-
uation is a mathematical model. Modeling often involves making
simplifying assumptions that ignore some features of the situation
being modeled. If a population grows by approximately the same

G-MG.1 Use geometric shapes, their measures, and their proper-
ties to describe objects (e.g., modeling a tree trunk or a human
torso as a cylinder).

G-MG.2 Apply concepts of density based on area and volume in
modeling situations (e.g., persons per square mile, BTUs per cu-
bic foot).

percentage each year, sometimes a bit above, sometimes a bit below,
students might choose to fit an exponential function to the data and
use it to make predictions. In geometry, in order to study how the
illuminated percentage of the moon’s surface varies during a month,
students might represent the moon as a rotating sphere, half black
and half white.G-MG.1

A Fermi Problem: How Many Leaves on a Tree?

Amy and Greg are raking up leaves from a large maple tree in
their yard and Amy remarks “I’ll bet this tree has a million
leaves." Greg is skeptical. Amy suggests the following method to
check whether or not this is possible:

• Find a small maple tree and estimate how many leaves it
has.

• Use that number to figure out how many leaves the big
maple tree has.

1. Describe the assumptions and calculations needed to
carry out Amy’s strategy.

2. Amy and Greg estimate that their maple tree is about 35
feet tall. They find a 5-foot-tall maple tree and estimate
that it has about 400 leaves. Use the calculations that
you described to estimate the number of leaves on Amy
and Greg’s tree.

(adapted from Illustrative Mathematics,
illustrativemathematics.org/content-standards/
tasks/1137)

Geometric modeling can be used in Fermi problems, problems
which ask for rough estimates of quantities. Such problems often
involved estimates of densities, as in the example in the margin.G-MG.2

Of all the subjects students learn in geometry, trigonometry may
have the greatest application in college and career. Students in
high school should see authentic applications of trigonometry to
many different contexts (see next page).G-SRT.8

G-SRT.8 Use trigonometric ratios and the Pythagorean Theorem to
solve right triangles in applied problems.

5See, for example, http://www.matematicasvisuales.com/english/html/
history/cavalieri/cavalierisphere.html.
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Modeling with trigonometry

Vector graphic
A digital artist using a computer drawing program clicked on a
diagonal line segment and saw that it measured 216 units
horizontally and 45 units vertically. How many units long was the
line segment? If the artist wants to rotate the line segment to be
vertical, what angle of rotation could be used? Give your
answers to the nearest hundredth.

Answers. 220.64 units long; 11.77˝ clockwise or 78.23˝

counter-clockwise.

Flight of the bumblebee
A bumblebee sitting on a tulip wanted to fly over to a daffodil
located 100 meters due west. The bumblebee did fly in a straight
line, but it mistakenly flew in a direction 5 degrees south of west.
The bumblebee passed to the south of the daffodil—how far
south?

Answer. 8.75 meters or about 9 meters.

Star distance
Viewed from Earth, the North Star and Betelgeuse are
separated by an angle of about 83 degrees. If the North Star is
about 430 light years from Earth, and Betelgeuse is about 640
light years from Earth, then about how far apart are the North
Star and Betelgeuse (measured in light years)?

Answer. About 726 light years.

Comment. This could be solved using a G-SRT.10(+) strategy
(Law of Cosines), or via G-SRT.8 by dropping a perpendicular to
make two right triangles.

Crop Loss
One corner of a soybean field wasn’t irrigated, and no soybeans
could be harvested from that part of the field. How much money
was lost if soybeans sold for $12 a bushel that year and an acre
of irrigated land yields 54 bushels of soybeans? Note, 1 acre is
approximately 4000 square meters.

Comment. This could be solved using a G-SRT.10(+) strategy (Law of Cosines), or via
G-SRT.8 by dropping a perpendicular to make two right triangles.

4 Crop Loss

One corner of a soybean field wasn’t irrigated, and no soybeans could be harvested from
that part of the field. How much money was lost if soybeans sold for $12 a bushel
that year and an acre of irrigated land yields 54 bushels of soybeans? Note, 1 acre is
approximately 4000 square meters.

Answer: $972 or approximately $1000.

See http://www.agriview.com/news/crop/grain-farm-net-incomes-down-this-year-given-
corn-beans/article 65e35712-f9fb-11e2-9bde-0019bb2963f4.html.

2

Answer : $972 or approximately $1000.

See http://tinyurl.com/mtcn6zq.
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